This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbv3hv if possible. (Contributed by NM, 8-Jun-1993) (Proof shortened by Andrew Salmon, 25-May-2011) (Proof shortened by Wolf Lammen, 12-May-2018) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbv3h.1 | |- ( ph -> A. y ph ) |
|
| cbv3h.2 | |- ( ps -> A. x ps ) |
||
| cbv3h.3 | |- ( x = y -> ( ph -> ps ) ) |
||
| Assertion | cbv3h | |- ( A. x ph -> A. y ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbv3h.1 | |- ( ph -> A. y ph ) |
|
| 2 | cbv3h.2 | |- ( ps -> A. x ps ) |
|
| 3 | cbv3h.3 | |- ( x = y -> ( ph -> ps ) ) |
|
| 4 | 1 | nf5i | |- F/ y ph |
| 5 | 2 | nf5i | |- F/ x ps |
| 6 | 4 5 3 | cbv3 | |- ( A. x ph -> A. y ps ) |