This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base of the category structure. (Contributed by Zhi Wang, 5-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catbas.c | |- C = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } |
|
| catbas.b | |- B e. _V |
||
| Assertion | catbas | |- B = ( Base ` C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catbas.c | |- C = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } |
|
| 2 | catbas.b | |- B e. _V |
|
| 3 | catstr | |- { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } Struct <. 1 , ; 1 5 >. |
|
| 4 | 1 3 | eqbrtri | |- C Struct <. 1 , ; 1 5 >. |
| 5 | baseid | |- Base = Slot ( Base ` ndx ) |
|
| 6 | snsstp1 | |- { <. ( Base ` ndx ) , B >. } C_ { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } |
|
| 7 | 6 1 | sseqtrri | |- { <. ( Base ` ndx ) , B >. } C_ C |
| 8 | 4 5 7 | strfv | |- ( B e. _V -> B = ( Base ` C ) ) |
| 9 | 2 8 | ax-mp | |- B = ( Base ` C ) |