This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A necessary and sufficient condition for two sets to be related under a binary relation which is an unordered triple. (Contributed by Scott Fenton, 8-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brtp.1 | |- X e. _V |
|
| brtp.2 | |- Y e. _V |
||
| Assertion | brtp | |- ( X { <. A , B >. , <. C , D >. , <. E , F >. } Y <-> ( ( X = A /\ Y = B ) \/ ( X = C /\ Y = D ) \/ ( X = E /\ Y = F ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brtp.1 | |- X e. _V |
|
| 2 | brtp.2 | |- Y e. _V |
|
| 3 | df-br | |- ( X { <. A , B >. , <. C , D >. , <. E , F >. } Y <-> <. X , Y >. e. { <. A , B >. , <. C , D >. , <. E , F >. } ) |
|
| 4 | opex | |- <. X , Y >. e. _V |
|
| 5 | 4 | eltp | |- ( <. X , Y >. e. { <. A , B >. , <. C , D >. , <. E , F >. } <-> ( <. X , Y >. = <. A , B >. \/ <. X , Y >. = <. C , D >. \/ <. X , Y >. = <. E , F >. ) ) |
| 6 | 1 2 | opth | |- ( <. X , Y >. = <. A , B >. <-> ( X = A /\ Y = B ) ) |
| 7 | 1 2 | opth | |- ( <. X , Y >. = <. C , D >. <-> ( X = C /\ Y = D ) ) |
| 8 | 1 2 | opth | |- ( <. X , Y >. = <. E , F >. <-> ( X = E /\ Y = F ) ) |
| 9 | 6 7 8 | 3orbi123i | |- ( ( <. X , Y >. = <. A , B >. \/ <. X , Y >. = <. C , D >. \/ <. X , Y >. = <. E , F >. ) <-> ( ( X = A /\ Y = B ) \/ ( X = C /\ Y = D ) \/ ( X = E /\ Y = F ) ) ) |
| 10 | 3 5 9 | 3bitri | |- ( X { <. A , B >. , <. C , D >. , <. E , F >. } Y <-> ( ( X = A /\ Y = B ) \/ ( X = C /\ Y = D ) \/ ( X = E /\ Y = F ) ) ) |