This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A weak variant of sbid2 not requiring ax-13 nor ax-10 . On top of Tarski's FOL, one implication requires only ax12v , and the other requires only sp . (Contributed by BJ, 25-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-sb | |- ( ph <-> A. y ( y = x -> A. x ( x = y -> ph ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax12v | |- ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) |
|
| 2 | 1 | equcoms | |- ( y = x -> ( ph -> A. x ( x = y -> ph ) ) ) |
| 3 | 2 | com12 | |- ( ph -> ( y = x -> A. x ( x = y -> ph ) ) ) |
| 4 | 3 | alrimiv | |- ( ph -> A. y ( y = x -> A. x ( x = y -> ph ) ) ) |
| 5 | sp | |- ( A. x ( x = y -> ph ) -> ( x = y -> ph ) ) |
|
| 6 | 5 | com12 | |- ( x = y -> ( A. x ( x = y -> ph ) -> ph ) ) |
| 7 | 6 | equcoms | |- ( y = x -> ( A. x ( x = y -> ph ) -> ph ) ) |
| 8 | 7 | a2i | |- ( ( y = x -> A. x ( x = y -> ph ) ) -> ( y = x -> ph ) ) |
| 9 | 8 | alimi | |- ( A. y ( y = x -> A. x ( x = y -> ph ) ) -> A. y ( y = x -> ph ) ) |
| 10 | bj-eqs | |- ( ph <-> A. y ( y = x -> ph ) ) |
|
| 11 | 9 10 | sylibr | |- ( A. y ( y = x -> A. x ( x = y -> ph ) ) -> ph ) |
| 12 | 4 11 | impbii | |- ( ph <-> A. y ( y = x -> A. x ( x = y -> ph ) ) ) |