This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of cbvexd with a disjoint variable condition, which does not require ax-13 . (Contributed by BJ, 16-Jun-2019) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bj-cbvaldv.1 | |- F/ y ph |
|
| bj-cbvaldv.2 | |- ( ph -> F/ y ps ) |
||
| bj-cbvaldv.3 | |- ( ph -> ( x = y -> ( ps <-> ch ) ) ) |
||
| Assertion | bj-cbvexdv | |- ( ph -> ( E. x ps <-> E. y ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-cbvaldv.1 | |- F/ y ph |
|
| 2 | bj-cbvaldv.2 | |- ( ph -> F/ y ps ) |
|
| 3 | bj-cbvaldv.3 | |- ( ph -> ( x = y -> ( ps <-> ch ) ) ) |
|
| 4 | 2 | nfnd | |- ( ph -> F/ y -. ps ) |
| 5 | notbi | |- ( ( ps <-> ch ) <-> ( -. ps <-> -. ch ) ) |
|
| 6 | 3 5 | imbitrdi | |- ( ph -> ( x = y -> ( -. ps <-> -. ch ) ) ) |
| 7 | 1 4 6 | bj-cbvaldv | |- ( ph -> ( A. x -. ps <-> A. y -. ch ) ) |
| 8 | 7 | notbid | |- ( ph -> ( -. A. x -. ps <-> -. A. y -. ch ) ) |
| 9 | df-ex | |- ( E. x ps <-> -. A. x -. ps ) |
|
| 10 | df-ex | |- ( E. y ch <-> -. A. y -. ch ) |
|
| 11 | 8 9 10 | 3bitr4g | |- ( ph -> ( E. x ps <-> E. y ch ) ) |