This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of cbv1h with a disjoint variable condition, which does not require ax-13 . (Contributed by BJ, 16-Jun-2019) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bj-cbv1hv.1 | |- ( ph -> ( ps -> A. y ps ) ) |
|
| bj-cbv1hv.2 | |- ( ph -> ( ch -> A. x ch ) ) |
||
| bj-cbv1hv.3 | |- ( ph -> ( x = y -> ( ps -> ch ) ) ) |
||
| Assertion | bj-cbv1hv | |- ( A. x A. y ph -> ( A. x ps -> A. y ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-cbv1hv.1 | |- ( ph -> ( ps -> A. y ps ) ) |
|
| 2 | bj-cbv1hv.2 | |- ( ph -> ( ch -> A. x ch ) ) |
|
| 3 | bj-cbv1hv.3 | |- ( ph -> ( x = y -> ( ps -> ch ) ) ) |
|
| 4 | nfa1 | |- F/ x A. x A. y ph |
|
| 5 | nfa2 | |- F/ y A. x A. y ph |
|
| 6 | 2sp | |- ( A. x A. y ph -> ph ) |
|
| 7 | 6 1 | syl | |- ( A. x A. y ph -> ( ps -> A. y ps ) ) |
| 8 | 5 7 | nf5d | |- ( A. x A. y ph -> F/ y ps ) |
| 9 | 6 2 | syl | |- ( A. x A. y ph -> ( ch -> A. x ch ) ) |
| 10 | 4 9 | nf5d | |- ( A. x A. y ph -> F/ x ch ) |
| 11 | 6 3 | syl | |- ( A. x A. y ph -> ( x = y -> ( ps -> ch ) ) ) |
| 12 | 4 5 8 10 11 | cbv1v | |- ( A. x A. y ph -> ( A. x ps -> A. y ch ) ) |