This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem biortn

Description: A wff is equivalent to its negated disjunction with falsehood. (Contributed by NM, 9-Jul-2012)

Ref Expression
Assertion biortn
|- ( ph -> ( ps <-> ( -. ph \/ ps ) ) )

Proof

Step Hyp Ref Expression
1 notnot
 |-  ( ph -> -. -. ph )
2 biorf
 |-  ( -. -. ph -> ( ps <-> ( -. ph \/ ps ) ) )
3 1 2 syl
 |-  ( ph -> ( ps <-> ( -. ph \/ ps ) ) )