This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "Baroco", one of the syllogisms of Aristotelian logic. All ph is ps , and some ch is not ps , therefore some ch is not ph . In Aristotelian notation, AOO-2: PaM and SoM therefore SoP. For example, "All informative things are useful", "Some websites are not useful", therefore "Some websites are not informative". (Contributed by David A. Wheeler, 28-Aug-2016) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | baroco.maj | |- A. x ( ph -> ps ) |
|
| baroco.min | |- E. x ( ch /\ -. ps ) |
||
| Assertion | baroco | |- E. x ( ch /\ -. ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baroco.maj | |- A. x ( ph -> ps ) |
|
| 2 | baroco.min | |- E. x ( ch /\ -. ps ) |
|
| 3 | con3 | |- ( ( ph -> ps ) -> ( -. ps -> -. ph ) ) |
|
| 4 | 3 | anim2d | |- ( ( ph -> ps ) -> ( ( ch /\ -. ps ) -> ( ch /\ -. ph ) ) ) |
| 5 | 4 | alimi | |- ( A. x ( ph -> ps ) -> A. x ( ( ch /\ -. ps ) -> ( ch /\ -. ph ) ) ) |
| 6 | 1 5 | ax-mp | |- A. x ( ( ch /\ -. ps ) -> ( ch /\ -. ph ) ) |
| 7 | exim | |- ( A. x ( ( ch /\ -. ps ) -> ( ch /\ -. ph ) ) -> ( E. x ( ch /\ -. ps ) -> E. x ( ch /\ -. ph ) ) ) |
|
| 8 | 6 2 7 | mp2 | |- E. x ( ch /\ -. ph ) |