This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Derive set.mm's original ax-c11n from others. Commutation law for identical variable specifiers. The antecedent and consequent are true when x and y are substituted with the same variable. Lemma L12 in Megill p. 445 (p. 12 of the preprint). If a disjoint variable condition is added on x and y , then this becomes an instance of aevlem . Use aecom instead when this does not lengthen the proof. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 10-May-1993) (Revised by NM, 7-Nov-2015) (Proof shortened by Wolf Lammen, 6-Mar-2018) (Revised by Wolf Lammen, 30-Nov-2019) (Proof shortened by BJ, 29-Mar-2021) (Proof shortened by Wolf Lammen, 2-Jul-2021) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axc11n | |- ( A. x x = y -> A. y y = x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dveeq1 | |- ( -. A. y y = x -> ( x = z -> A. y x = z ) ) |
|
| 2 | 1 | com12 | |- ( x = z -> ( -. A. y y = x -> A. y x = z ) ) |
| 3 | axc11r | |- ( A. x x = y -> ( A. y x = z -> A. x x = z ) ) |
|
| 4 | aev | |- ( A. x x = z -> A. y y = x ) |
|
| 5 | 3 4 | syl6 | |- ( A. x x = y -> ( A. y x = z -> A. y y = x ) ) |
| 6 | 2 5 | syl9 | |- ( x = z -> ( A. x x = y -> ( -. A. y y = x -> A. y y = x ) ) ) |
| 7 | ax6evr | |- E. z x = z |
|
| 8 | 6 7 | exlimiiv | |- ( A. x x = y -> ( -. A. y y = x -> A. y y = x ) ) |
| 9 | 8 | pm2.18d | |- ( A. x x = y -> A. y y = x ) |