This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem altru

Description: For all sets, T. is true. (Contributed by Anthony Hart, 13-Sep-2011)

Ref Expression
Assertion altru
|- A. x T.

Proof

Step Hyp Ref Expression
1 tru
 |-  T.
2 1 ax-gen
 |-  A. x T.