This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Axiom of Choice. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ac6gf.1 | |- F/ y ps |
|
| ac6gf.2 | |- ( y = ( f ` x ) -> ( ph <-> ps ) ) |
||
| Assertion | ac6gf | |- ( ( A e. C /\ A. x e. A E. y e. B ph ) -> E. f ( f : A --> B /\ A. x e. A ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ac6gf.1 | |- F/ y ps |
|
| 2 | ac6gf.2 | |- ( y = ( f ` x ) -> ( ph <-> ps ) ) |
|
| 3 | cbvrexsvw | |- ( E. y e. B ph <-> E. z e. B [ z / y ] ph ) |
|
| 4 | 3 | ralbii | |- ( A. x e. A E. y e. B ph <-> A. x e. A E. z e. B [ z / y ] ph ) |
| 5 | 1 2 | sbhypf | |- ( z = ( f ` x ) -> ( [ z / y ] ph <-> ps ) ) |
| 6 | 5 | ac6sg | |- ( A e. C -> ( A. x e. A E. z e. B [ z / y ] ph -> E. f ( f : A --> B /\ A. x e. A ps ) ) ) |
| 7 | 6 | imp | |- ( ( A e. C /\ A. x e. A E. z e. B [ z / y ] ph ) -> E. f ( f : A --> B /\ A. x e. A ps ) ) |
| 8 | 4 7 | sylan2b | |- ( ( A e. C /\ A. x e. A E. y e. B ph ) -> E. f ( f : A --> B /\ A. x e. A ps ) ) |