This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An absolute value is a function from the ring to the nonnegative real numbers. (Contributed by Mario Carneiro, 8-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abvf.a | |- A = ( AbsVal ` R ) |
|
| abvf.b | |- B = ( Base ` R ) |
||
| Assertion | abvfge0 | |- ( F e. A -> F : B --> ( 0 [,) +oo ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abvf.a | |- A = ( AbsVal ` R ) |
|
| 2 | abvf.b | |- B = ( Base ` R ) |
|
| 3 | 1 | abvrcl | |- ( F e. A -> R e. Ring ) |
| 4 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 5 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 6 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 7 | 1 2 4 5 6 | isabv | |- ( R e. Ring -> ( F e. A <-> ( F : B --> ( 0 [,) +oo ) /\ A. x e. B ( ( ( F ` x ) = 0 <-> x = ( 0g ` R ) ) /\ A. y e. B ( ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) /\ ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) ) ) ) |
| 8 | 3 7 | syl | |- ( F e. A -> ( F e. A <-> ( F : B --> ( 0 [,) +oo ) /\ A. x e. B ( ( ( F ` x ) = 0 <-> x = ( 0g ` R ) ) /\ A. y e. B ( ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) /\ ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) ) ) ) |
| 9 | 8 | ibi | |- ( F e. A -> ( F : B --> ( 0 [,) +oo ) /\ A. x e. B ( ( ( F ` x ) = 0 <-> x = ( 0g ` R ) ) /\ A. y e. B ( ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) /\ ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) ) ) |
| 10 | 9 | simpld | |- ( F e. A -> F : B --> ( 0 [,) +oo ) ) |