This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence of a class of subsets. (Contributed by NM, 15-Jul-2006) (Proof shortened by Andrew Salmon, 25-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abssexg | |- ( A e. V -> { x | ( x C_ A /\ ph ) } e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexg | |- ( A e. V -> ~P A e. _V ) |
|
| 2 | df-pw | |- ~P A = { x | x C_ A } |
|
| 3 | 2 | eleq1i | |- ( ~P A e. _V <-> { x | x C_ A } e. _V ) |
| 4 | simpl | |- ( ( x C_ A /\ ph ) -> x C_ A ) |
|
| 5 | 4 | ss2abi | |- { x | ( x C_ A /\ ph ) } C_ { x | x C_ A } |
| 6 | ssexg | |- ( ( { x | ( x C_ A /\ ph ) } C_ { x | x C_ A } /\ { x | x C_ A } e. _V ) -> { x | ( x C_ A /\ ph ) } e. _V ) |
|
| 7 | 5 6 | mpan | |- ( { x | x C_ A } e. _V -> { x | ( x C_ A /\ ph ) } e. _V ) |
| 8 | 3 7 | sylbi | |- ( ~P A e. _V -> { x | ( x C_ A /\ ph ) } e. _V ) |
| 9 | 1 8 | syl | |- ( A e. V -> { x | ( x C_ A /\ ph ) } e. _V ) |