This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem ablcmnd

Description: An Abelian group is a commutative monoid. (Contributed by SN, 1-Jun-2024)

Ref Expression
Hypothesis ablcmnd.1
|- ( ph -> G e. Abel )
Assertion ablcmnd
|- ( ph -> G e. CMnd )

Proof

Step Hyp Ref Expression
1 ablcmnd.1
 |-  ( ph -> G e. Abel )
2 ablcmn
 |-  ( G e. Abel -> G e. CMnd )
3 1 2 syl
 |-  ( ph -> G e. CMnd )