This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Disjunction of three antecedents. (Contributed by NM, 8-Apr-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 3jao | |- ( ( ( ph -> ps ) /\ ( ch -> ps ) /\ ( th -> ps ) ) -> ( ( ph \/ ch \/ th ) -> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jao | |- ( ( ph -> ps ) -> ( ( ch -> ps ) -> ( ( ph \/ ch ) -> ps ) ) ) |
|
| 2 | df-3or | |- ( ( ph \/ ch \/ th ) <-> ( ( ph \/ ch ) \/ th ) ) |
|
| 3 | jao | |- ( ( ( ph \/ ch ) -> ps ) -> ( ( th -> ps ) -> ( ( ( ph \/ ch ) \/ th ) -> ps ) ) ) |
|
| 4 | 2 3 | syl7bi | |- ( ( ( ph \/ ch ) -> ps ) -> ( ( th -> ps ) -> ( ( ph \/ ch \/ th ) -> ps ) ) ) |
| 5 | 1 4 | syl6 | |- ( ( ph -> ps ) -> ( ( ch -> ps ) -> ( ( th -> ps ) -> ( ( ph \/ ch \/ th ) -> ps ) ) ) ) |
| 6 | 5 | 3imp | |- ( ( ( ph -> ps ) /\ ( ch -> ps ) /\ ( th -> ps ) ) -> ( ( ph \/ ch \/ th ) -> ps ) ) |