This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The empty metric. (Contributed by NM, 30-Aug-2006) (Revised by Mario Carneiro, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0met | |- (/) e. ( Met ` (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | |- (/) e. _V |
|
| 2 | f0 | |- (/) : (/) --> RR |
|
| 3 | xp0 | |- ( (/) X. (/) ) = (/) |
|
| 4 | 3 | feq2i | |- ( (/) : ( (/) X. (/) ) --> RR <-> (/) : (/) --> RR ) |
| 5 | 2 4 | mpbir | |- (/) : ( (/) X. (/) ) --> RR |
| 6 | noel | |- -. x e. (/) |
|
| 7 | 6 | pm2.21i | |- ( x e. (/) -> ( ( x (/) y ) = 0 <-> x = y ) ) |
| 8 | 7 | adantr | |- ( ( x e. (/) /\ y e. (/) ) -> ( ( x (/) y ) = 0 <-> x = y ) ) |
| 9 | 6 | pm2.21i | |- ( x e. (/) -> ( x (/) y ) <_ ( ( z (/) x ) + ( z (/) y ) ) ) |
| 10 | 9 | 3ad2ant1 | |- ( ( x e. (/) /\ y e. (/) /\ z e. (/) ) -> ( x (/) y ) <_ ( ( z (/) x ) + ( z (/) y ) ) ) |
| 11 | 1 5 8 10 | ismeti | |- (/) e. ( Met ` (/) ) |