This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of r19.26 with three quantifiers. (Contributed by FL, 22-Nov-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r19.26-3 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ∧ ∀ 𝑥 ∈ 𝐴 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.26 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ∧ ∀ 𝑥 ∈ 𝐴 𝜒 ) ) | |
| 2 | r19.26 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) | |
| 3 | 1 2 | bianbi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ↔ ( ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ∧ ∀ 𝑥 ∈ 𝐴 𝜒 ) ) |
| 4 | df-3an | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ) | |
| 5 | 4 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ) |
| 6 | df-3an | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ∧ ∀ 𝑥 ∈ 𝐴 𝜒 ) ↔ ( ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ∧ ∀ 𝑥 ∈ 𝐴 𝜒 ) ) | |
| 7 | 3 5 6 | 3bitr4i | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ∧ ∀ 𝑥 ∈ 𝐴 𝜒 ) ) |