This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete proof of 19.43 . Do not delete as it is referenced on the mmrecent.html page and in conventions-labels . (Contributed by NM, 5-Aug-1993) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 19.43OLD | ⊢ ( ∃ 𝑥 ( 𝜑 ∨ 𝜓 ) ↔ ( ∃ 𝑥 𝜑 ∨ ∃ 𝑥 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioran | ⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) ↔ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) | |
| 2 | 1 | albii | ⊢ ( ∀ 𝑥 ¬ ( 𝜑 ∨ 𝜓 ) ↔ ∀ 𝑥 ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) |
| 3 | 19.26 | ⊢ ( ∀ 𝑥 ( ¬ 𝜑 ∧ ¬ 𝜓 ) ↔ ( ∀ 𝑥 ¬ 𝜑 ∧ ∀ 𝑥 ¬ 𝜓 ) ) | |
| 4 | alnex | ⊢ ( ∀ 𝑥 ¬ 𝜑 ↔ ¬ ∃ 𝑥 𝜑 ) | |
| 5 | alnex | ⊢ ( ∀ 𝑥 ¬ 𝜓 ↔ ¬ ∃ 𝑥 𝜓 ) | |
| 6 | 4 5 | anbi12i | ⊢ ( ( ∀ 𝑥 ¬ 𝜑 ∧ ∀ 𝑥 ¬ 𝜓 ) ↔ ( ¬ ∃ 𝑥 𝜑 ∧ ¬ ∃ 𝑥 𝜓 ) ) |
| 7 | 2 3 6 | 3bitri | ⊢ ( ∀ 𝑥 ¬ ( 𝜑 ∨ 𝜓 ) ↔ ( ¬ ∃ 𝑥 𝜑 ∧ ¬ ∃ 𝑥 𝜓 ) ) |
| 8 | 7 | notbii | ⊢ ( ¬ ∀ 𝑥 ¬ ( 𝜑 ∨ 𝜓 ) ↔ ¬ ( ¬ ∃ 𝑥 𝜑 ∧ ¬ ∃ 𝑥 𝜓 ) ) |
| 9 | df-ex | ⊢ ( ∃ 𝑥 ( 𝜑 ∨ 𝜓 ) ↔ ¬ ∀ 𝑥 ¬ ( 𝜑 ∨ 𝜓 ) ) | |
| 10 | oran | ⊢ ( ( ∃ 𝑥 𝜑 ∨ ∃ 𝑥 𝜓 ) ↔ ¬ ( ¬ ∃ 𝑥 𝜑 ∧ ¬ ∃ 𝑥 𝜓 ) ) | |
| 11 | 8 9 10 | 3bitr4i | ⊢ ( ∃ 𝑥 ( 𝜑 ∨ 𝜓 ) ↔ ( ∃ 𝑥 𝜑 ∨ ∃ 𝑥 𝜓 ) ) |