This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: We call a class "untanged" if all its members are not members of themselves. The term originates from Isbell (see citation in dfon2 ). Using this concept, we can avoid a lot of the uses of the Axiom of Regularity. Here, we prove a series of properties of untanged classes. First, we prove that an untangled class is not a member of itself. (Contributed by Scott Fenton, 28-Feb-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | untelirr | |- ( A. x e. A -. x e. x -> -. A e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | |- ( x = A -> ( x e. x <-> A e. x ) ) |
|
| 2 | eleq2 | |- ( x = A -> ( A e. x <-> A e. A ) ) |
|
| 3 | 1 2 | bitrd | |- ( x = A -> ( x e. x <-> A e. A ) ) |
| 4 | 3 | notbid | |- ( x = A -> ( -. x e. x <-> -. A e. A ) ) |
| 5 | 4 | rspccv | |- ( A. x e. A -. x e. x -> ( A e. A -> -. A e. A ) ) |
| 6 | 5 | pm2.01d | |- ( A. x e. A -. x e. x -> -. A e. A ) |